Four rules with fractions

(1) Work out the missing total.

$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$2 \frac{1}{3}$

Show all the steps in your working.
Explain your method to a partner

2 Work out the perimeter of the rectangle.

Explain your method to your partner. Did you work it out in the same way?
(3) Complete the calculations.
a) $\left(\frac{2}{3}+\frac{2}{3}\right) \times 3$
b) $\left(\frac{2}{3}+\frac{2}{3}\right) \div 3$
c) $\frac{2}{3}+\frac{2}{3} \times 3$
d) $\frac{2}{3}+\frac{2}{3} \div 3$
(4) Jack mixes $\frac{2}{3}$ of a litre of orange juice and $\frac{3}{4}$ of a litre of apple juice.
 He pours the juice into 5 glasses equally.

How much juice is in each glass?
(5)

The area of these two shapes are equal.
Find the height of the rectangle.

(6) In a class, $\frac{2}{3}$ of the pupils are boys.
$\frac{1}{4}$ of the girls wear glasses and $\frac{1}{6}$ of the boys wear glasses.
Do more boys or girls wear glasses?
Explain your reasoning.

7 Work out the calculation.
$\left(1 \frac{3}{5}-\frac{7}{10}\right)^{2}$

8 Use what you know about working with fractions to explain, prove or disprove the following statements.
a) Half of a half of a half is an eighth.
b) Quarter of a half plus half of a quarter is a quarter.

9

Explore the different totals you can make using each card once only.

