Four rules with fractions

Work out the missing total.

<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	2 1 3
3	3	3	3	

Show all the steps in your working.

Explain your method to a partner.

- Work out the perimeter of the rectangle.

Explain your method to your partner.

Did you work it out in the same way?

- Complete the calculations.

- a) $\left(\frac{2}{3} + \frac{2}{3}\right) \times 3$ b) $\left(\frac{2}{3} + \frac{2}{3}\right) \div 3$ c) $\frac{2}{3} + \frac{2}{3} \times 3$ d) $\frac{2}{3} + \frac{2}{3} \div 3$
- Jack mixes $\frac{2}{3}$ of a litre of orange juice and $\frac{3}{4}$ of a litre of apple juice. He pours the juice into 5 glasses equally.

How much juice is in each glass?

The area of these two shapes are equal.

> Find the height of the rectangle.

In a class, $\frac{2}{3}$ of the pupils are boys. $\frac{1}{4}$ of the girls wear glasses and $\frac{1}{6}$ of the boys wear glasses.

Do more boys or girls wear glasses?

Explain your reasoning.

Work out the calculation.

$$\left(1\frac{3}{5}-\frac{7}{10}\right)^2$$

Use what you know about working with fractions to explain, prove or disprove the following statements.

b) Quarter of a half plus half of a quarter is a quarter.

Explore the different totals you can make using each card once only.

